题目链接
题解
考虑交集至少为iii个的情况,设方案数为g[i]g[i]g[i],显然
g[i]=(ni)(22n−i−1) g[i]=\binom{n}{i}(2^{2^{n-i}}-1) g[i]=(in)(22n−i−1) 容斥一下,答案就是∑i=kn(−1)i−k(ik)(ni)(22n−i−1) \sum_{i=k}^n (-1)^{i-k}\binom{i}{k}\binom{n}{i}(2^{2^{n-i}}-1) i=k∑n(−1)i−k(ki)(in)(22n−i−1)代码
#includeint read(){ int x=0,f=1; char ch=getchar(); while((ch<'0')||(ch>'9')) { if(ch=='-') { f=-f; } ch=getchar(); } while((ch>='0')&&(ch<='9')) { x=x*10+ch-'0'; ch=getchar(); } return x*f;}const int maxn=1000000;const int mod=1000000007;int n,k,fac[maxn+10],ifac[maxn+10],ans;int quickpow(int a,int b,int m){ int res=1; while(b) { if(b&1) { res=1ll*res*a%m; } a=1ll*a*a%m; b>>=1; } return res;}int C(int a,int b){ return 1ll*fac[a]*ifac[b]%mod*ifac[a-b]%mod;}int main(){ n=read(); k=read(); fac[0]=1; for(int i=1; i<=n; ++i) { fac[i]=1ll*fac[i-1]*i%mod; } ifac[n]=quickpow(fac[n],mod-2,mod); for(int i=n-1; i>=0; --i) { ifac[i]=1ll*ifac[i+1]*(i+1)%mod; } int op=1; for(int i=k; i<=n; ++i) { ans=(ans+1ll*op*C(n-k,n-i)%mod*(quickpow(2,quickpow(2,n-i,mod-1),mod)-1+mod))%mod; op=mod-op; } printf("%lld\n",1ll*ans*C(n,k)%mod); return 0;}